Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 119(34): e2200652119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991763

ABSTRACT

Although testing, contact tracing, and case isolation programs can mitigate COVID-19 transmission and allow the relaxation of social distancing measures, few countries worldwide have succeeded in scaling such efforts to levels that suppress spread. The efficacy of test-trace-isolate likely depends on the speed and extent of follow-up and the prevalence of SARS-CoV-2 in the community. Here, we use a granular model of COVID-19 transmission to estimate the public health impacts of test-trace-isolate programs across a range of programmatic and epidemiological scenarios, based on testing and contact tracing data collected on a university campus and surrounding community in Austin, TX, between October 1, 2020, and January 1, 2021. The median time between specimen collection from a symptomatic case and quarantine of a traced contact was 2 days (interquartile range [IQR]: 2 to 3) on campus and 5 days (IQR: 3 to 8) in the community. Assuming a reproduction number of 1.2, we found that detection of 40% of all symptomatic cases followed by isolation is expected to avert 39% (IQR: 30% to 45%) of COVID-19 cases. Contact tracing is expected to increase the cases averted to 53% (IQR: 42% to 58%) or 40% (32% to 47%), assuming the 2- and 5-day delays estimated on campus and in the community, respectively. In a tracing-accelerated scenario, in which 75% of contacts are notified the day after specimen collection, cases averted increase to 68% (IQR: 55% to 72%). An accelerated contact tracing program leveraging rapid testing and electronic reporting of test results can significantly curtail local COVID-19 transmission.


Subject(s)
COVID-19 Testing , COVID-19 , Contact Tracing , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing/standards , COVID-19 Testing/statistics & numerical data , Contact Tracing/statistics & numerical data , Humans , Quarantine , SARS-CoV-2 , Texas/epidemiology
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1671750

ABSTRACT

Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. Here, we show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Using a forecasting model that has guided mitigation policies in Austin, TX, we estimate that the local reproduction number had an initial 7-d average of 5.8 (95% credible interval [CrI]: 3.6 to 7.9) and reached a low of 0.65 (95% CrI: 0.52 to 0.77) after the summer 2020 surge. Estimated case detection rates ranged from 17.2% (95% CrI: 11.8 to 22.1%) at the outset to a high of 70% (95% CrI: 64 to 80%) in January 2021, and infection prevalence remained above 0.1% between April 2020 and March 1, 2021, peaking at 0.8% (0.7-0.9%) in early January 2021. As precautionary behaviors increased safety in public spaces, the relationship between mobility and transmission weakened. We estimate that mobility-associated transmission was 62% (95% CrI: 52 to 68%) lower in February 2021 compared to March 2020. In a retrospective comparison, the 95% CrIs of our 1, 2, and 3 wk ahead forecasts contained 93.6%, 89.9%, and 87.7% of reported data, respectively. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities.


Subject(s)
COVID-19/epidemiology , Hospitals , Pandemics , SARS-CoV-2 , Delivery of Health Care , Forecasting , Hospitalization/statistics & numerical data , Humans , Public Health , Retrospective Studies , United States
3.
Lancet Reg Health Am ; 8: 100182, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1620909

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. METHODS: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. FINDINGS: Assuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. INTERPRETATION: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.

4.
Emerg Infect Dis ; 27(7): 1976-1979, 2021 07.
Article in English | MEDLINE | ID: covidwho-1278362

ABSTRACT

During rollout of coronavirus disease vaccination, policymakers have faced critical trade-offs. Using a mathematical model of transmission, we found that timing of vaccination rollout would be expected to have a substantially greater effect on mortality rate than risk-based prioritization and uptake and that prioritizing first doses over second doses may be lifesaving.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Models, Theoretical , SARS-CoV-2 , United States/epidemiology , Vaccination
5.
PLoS One ; 16(5): e0251153, 2021.
Article in English | MEDLINE | ID: covidwho-1225810

ABSTRACT

As COVID-19 spreads across the United States, people experiencing homelessness (PEH) are among the most vulnerable to the virus. To mitigate transmission, municipal governments are procuring isolation facilities for PEH to utilize following possible exposure to the virus. Here we describe the framework for anticipating isolation bed demand in PEH communities that we developed to support public health planning in Austin, Texas during March 2020. Using a mathematical model of COVID-19 transmission, we projected that, under no social distancing orders, a maximum of 299 (95% Confidence Interval: 223, 321) PEH may require isolation rooms in the same week. Based on these analyses, Austin Public Health finalized a lease agreement for 205 isolation rooms on March 27th 2020. As of October 7th 2020, a maximum of 130 rooms have been used on a single day, and a total of 602 PEH have used the facility. As a general rule of thumb, we expect the peak proportion of the PEH population that will require isolation to be roughly triple the projected peak daily incidence in the city. This framework can guide the provisioning of COVID-19 isolation and post-acute care facilities for high risk communities throughout the United States.


Subject(s)
COVID-19/transmission , Forecasting/methods , Patient Isolators/supply & distribution , COVID-19/epidemiology , Ill-Housed Persons/statistics & numerical data , Humans , Models, Theoretical , Patient Isolation/instrumentation , Patient Isolation/trends , Public Health , SARS-CoV-2/pathogenicity , United States
6.
Emerg Infect Dis ; 26(12): 3066-3068, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-781932

ABSTRACT

As coronavirus disease spreads throughout the United States, policymakers are contemplating reinstatement and relaxation of shelter-in-place orders. By using a model capturing high-risk populations and transmission rates estimated from hospitalization data, we found that postponing relaxation will only delay future disease waves. Cocooning vulnerable populations can prevent overwhelming medical surges.


Subject(s)
COVID-19/prevention & control , Physical Distancing , Adolescent , Adult , COVID-19/epidemiology , Child , Child, Preschool , Hospitalization/trends , Humans , Infant , Infant, Newborn , Middle Aged , Pandemics , Risk Factors , Surge Capacity , Texas/epidemiology , Young Adult
7.
Emerg Infect Dis ; 26(10): 2361-2369, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-661057

ABSTRACT

Social distancing orders have been enacted worldwide to slow the coronavirus disease (COVID-19) pandemic, reduce strain on healthcare systems, and prevent deaths. To estimate the impact of the timing and intensity of such measures, we built a mathematical model of COVID-19 transmission that incorporates age-stratified risks and contact patterns and projects numbers of hospitalizations, patients in intensive care units, ventilator needs, and deaths within US cities. Focusing on the Austin metropolitan area of Texas, we found that immediate and extensive social distancing measures were required to ensure that COVID-19 cases did not exceed local hospital capacity by early May 2020. School closures alone hardly changed the epidemic curve. A 2-week delay in implementation was projected to accelerate the timing of peak healthcare needs by 4 weeks and cause a bed shortage in intensive care units. This analysis informed the Stay Home-Work Safe order enacted by Austin on March 24, 2020.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Health Policy , Health Services/supply & distribution , Health Services/statistics & numerical data , Hospital Bed Capacity , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , COVID-19 , Child , Child, Preschool , Cities/epidemiology , Computer Simulation , Coronavirus Infections/mortality , Forecasting , Hospitalization/statistics & numerical data , Humans , Infant , Intensive Care Units/statistics & numerical data , Middle Aged , Models, Statistical , Pneumonia, Viral/mortality , Schools , Texas/epidemiology , Ventilators, Mechanical/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL